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Magnetohydrodynamic equilibria appropriate for describing ball lightning are discussed in this paper.
It is argued that lightning-induced fireballs should have a magnetic field decaying at infinity. Such
equilibria, in fact, have a vanishing magnetic field outside a singly connected plasma region and are
confined by the atmospheric pressure only. An equilibrium of this type with a spherical plasma bound-
ary is investigated, and characteristic quantities are computed. Perturbation of the pressure and current
profiles leads to deformation of the spherical plasma boundary, thus indicating the existence of a large
class of equilibria with a nonspherical boundary. Finally, some remarks are made concerning the stabili-

ty of these equilibria.

PACS number(s): 52.30.—q

I. INTRODUCTION

Ball lightning or fireballs are “luminous balls of some
10 cm in diameter, hovering or drifting through the air
for seconds without contact with other bodies and van-
ishing either silently or with a bang [1].” Reports on ob-
servations of ball lightning have accumulated in such
numbers (for a critical review see the books of Singer [2]
and Barry [3], as well as the review article of Smirnov [4])
that its mere existence is hardly debated any longer, but
its physical nature is debated all the more. For lack of a
commonly accepted theory, it has been proposed [5] that
the problem be split into three different (and possibly un-
connected) partial problems, viz., the problem of
confining gas or plasma stably for a few seconds (or even
minutes) to a finite volume, the question of what mecha-
nism is responsible for the observed electrical properties,
and the problem of the energy source, which produces
heat and light. Concerning the first partial problem,
most answers are based on Hill’s vortex in fluid dynamics
[6] or on spheromaklike configurations in plasma physics
[7]. Answers to the second problem are usually given on
the assumption that the fireball is triggered by an ordi-
nary stroke of lightning and the electrical properties
derive from that origin. As far as the energy source is
concerned, a major distinction is made between models
that assume the energy to be stored (mostly in chemical
form) inside the ball from the very beginning [4] and
models that require an external source, e.g., high-
frequency waves as suggested by Kapitza [8]. The
present paper makes a contribution only to the first par-
tial problem.

It is assumed that magnetohydrodynamic (MHD) is
the appropriate setting to describe ball lightning and that
axisymmetry is a good approximation to actual equili-
bria. [Only very few nonsymmetric equilibria are known
and these exhibit special properties. It is, in fact, doubt-
ful whether nonsymmetric equilibria with twisted mag-
netic lines exist at all.] Such equilibria are conveniently
described as solutions of a free-boundary problem with
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the poloidal magnetic flux as a dynamic variable, which
has to satisfy an elliptic equation containing pressure and
poloidal current density as two free profile functions [9].
If linear profile functions are chosen, this equation
separates and can be completely solved. A variety of
equilibria emerge, all with constant or growing magnetic
field at infinity, including equilibria analogous to Hills’
vortex or the spheromak. These equilibria, however, are
not suitable for describing fireballs for the following
reason. The average total current observed in a stroke of
lightning is of the order of 10*~10° A [2]. If the lightning
manages to move this current into a ball of 10 cm radius,
then a magnetic field of the order of 0.1-1 tesla is associ-
ated. In comparison with this, the geomagnetic field is
negligible and cannot serve as a background field. This
means that the lightning-induced magnetic field has to
decay at infinity. From a simple energy argument, it then
follows that the magnetic field has to vanish identically
outside the singly connected plasma region. A family of
such solutions is, in fact, already known: Prendergast
used them to construct equilibria for a self-gravitating in-
compressible fluid sphere [10], they are implicitly con-
tained in works on fusion-related equilibria by Morikawa,
Rebhan, and Yeh [11], and Wu and Chen associated
them with ball lightning [12]. These solutions are ap-
propriate for a spherical volume and are labeled with the
number m of magnetic axes contained in the sphere. If
the magnetic field is assumed to be the maximal one,
which can be confined in a sphere by an ambient pressure
of 1 atm, the solutions are free of any parameters other
than m and the radius R.

It is shown in this paper that for a sphere and linear
profile functions, the solutions are in fact the only ones.
The case m =1 is studied in greater detail; for R =10 cm,
the magnitudes of the magnetic field and current are
shown to agree well with the assumptions made above.
Further quantities which, for example, are characteristic
of the geometry or are important for stability considera-
tions are derived. Perturbations of the linear profile func-
tions are also considered. They are connected with defor-
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mations of the spherical boundary. It is shown that the
perturbed equilibrium can be calculated to an arbitrary
order, and for a quadratic perturbation of the pressure
profile the first-order perturbation of the equilibrium is
given explicitly. Finally, stability with respect to ideal
MHD modes is considered. The equilibria with more
than one magnetic axis turn out to be unstable with
respect to axisymmetric perturbations, whereas the m =1
equilibrium is marginally stable in this regard. This sim-
plest equilibrium, furthermore, satisfies all necessary cri-
teria for stability, which supports the presumption that it
is, in fact, stable. However, we have not yet been able to
prove this.

The paper is organized as follows: In Sec. II the free-
boundary problem is formulated, boundary conditions
appropriate for ball lightning are derived, and solutions
with spherical plasma boundary are presented. Charac-
teristic numbers for these equilibria are computed and
discussed in Sec. ITI. Section IV deals with perturbations
of the equilibria and Sec. V contains some stability con-
siderations. Section VI gives a summary. Some more
technical details are collected in an Appendix. On the
whole, we have attempted to write the paper in a way
that is also accessible to MHD nonspecialists; therefore,
some notions and equations well known to the experts are
explained in greater detail than otherwise necessary.

II. EQUILIBRIA WITH SPHERICAL PLASMA
BOUNDARY

The governing equations of ideal MHD equilibria are

Vp=jXB, pej=VXB, V-B=0, (1)

where B, j, and p denote the magnetic field, current den-
sity, and pressure, respectively. In general, i.e., for fusion
or astrophysics applications, the region  under con-
sideration (which may be finite or all space) is subdivided
into a highly conducting plasma region ¥ bounded by a
“magnetic surface” I, i.e., a surface with a vanishing
normal component of the magnetic field and an insulating
vacuum region V, where pressure and current density
vanish (see Fig. 1). Additionally, the normal component
of the magnetic field is prescribed on 32, or its asymptot-
ic behavior is prescribed if €} is all space. I is “free,” i.e.,
it is not determined a priori but is part of the solution.
For ball lightning it is appropriate to choose all space for
Q; the pressure in f7, however, does not vanish but takes
a finite value corresponding to atmospheric pressure, and
the magnetic field vanishes, in fact, identically in V, as
shown below.

Without further assumptions it is rather hard to find
solutions of the above problem; no ‘“‘general” solutions
are known and it is not even clear whether the above
problem is well posed or not [13]. This is the reason why
axisymmetry is assumed in the following. Using cylindri-
cal coordinates p, ¢, z, one can write the general axisym-
metric field in the form [9,14]

Bp,@,z)=VeXVi(p,z)+ud(Y)Ve , ()

where 1 is a function of p and z only, and I(%) is a free
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FIG. 1. Two-dimensional sketch of the plasma region V, vac-
uum region P, free-boundary T, and outer wall 39 (if existing).

profile function. 2wy denotes the poloidal magnetic flux
through a ribbon in the equatorial plane, which is limited
by the plasma boundary on one side and the surface
p=const on the other, and 27l denotes the poloidal
current through that ribbon. With the ansatz (2) inserted
in Eq. (1), the above problem reduces to the following el-
liptic problem for the flux function ¥ [9]:

A Y+pdl'I +ug?p'=0 in V, (3)
¥ 19 , &
Agp=—s— = —— | )
Y 9 pp 3z?
A, =0 in ¥, (5)
Y=9=0, Vyy=Vy onT . (6)

Here, p=p(1) >0 denotes another free profile function
and prime means the derivative with respect to ¥. Note
that on T" not only 1 and 177 but also their derivatives have
to match. If supplemented with a prescription of the
asymptotic behavior of ¥ (or boundary values on 9 if Q)
is finite) and with given profile functions p(¢) and I (%),
Egs. (3)-(6) constitute a free-boundary problem for the
unknowns v, 171\, and I'.

For nonlinear profile functions, the elliptic equation (3)
is also nonlinear and still hard to solve. Explicit solutions
are known only for linear profile functions

P=po—0¢%/p,, (8)

with constants A, p,, 8, and this case will be concentrated
on in this section. Furthermore, it is convenient to
switch to spherical coordinates 7, 8 by

p=rsinf, z=rcosf . (9)
Then, Eq. (3) takes the form
@ sing d [ 18|, o] o
72 2 36 | sin0 36 + A% |p=258r4sin“0 . (10)

An inhomogeneous solution is
(8/A*)r2sin%0 for A0
in [(8/10)r4sin29 for A=0 (1)
and the homogeneous part of Eq. (10) separates with the
ansatz
¥, =S(r)T(cosO) (12)

into
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2, d?
(1—¢t°)—T+cT=0, (13)
dt?
where the substitution ¢:=cos6 has been used, and
d? c
—S+ |A*——= [§=0. (14)
dr? r?

Equation (13) has a countable set of regular eigensolu-
tions {7T,}, n €N, with eigenvalues c,:=n(n—1). The
T, can be expressed by Legendre functions and, like
these, are orthogonal (with respect to a suitable scalar
product) and complete on the interval —1=<¢ <1 (see the
Appendix). If ¢, is inserted in Eq. (14), the solution regu-
lar in » =0 reads

Arj, _1(Ar) for A0
S,(r)=C, (15)
r" for A=0,

where j,(z) is a spherical Bessel function of the first kind
[15], and the external solution reads
S,(r=C,r"+C,r 1. (16)

Complete solutions of Egs. (3) and (5) for the profile func-
tions (7) and (8) are, therefore,

Yr,0)=v,,+ 3 S,(r)T,(cosb) (17)
nx2
and
H(r,0)=3 8,(r)T,(cosb) . (18)
nx2

Terms with n =1 have been omitted since they corre-
spond to singular magnetic fields [see Eq. (2)]. In order
to describe an equilibrium, ¥ and ¥ have still to meet the
matching condition (6). Only a few equilibria are known
and they all correspond to only the lowest term (n =2) in
the expansions (17) and (18): [Note that ¢, ~sin’6~ T,
(see the Appendix).]
Hill’s spherical vortex [6] has a purely poloidal mag-
netic field and is obtained for A=0:
)

1/1=—E-r2(R2—r2)T2,

2

(19)

Here, R is the radius of the spherical plasma region.
The spheromak [7] is a force-free configuration, thus
6=0:

Y=CArj,(Ar)T,, $=—§x2j;(AR )%(Rs—r3)T2 .

(20)

The parameter A is determined such that AR is a zero of
J1-

Finally, both solutions can be combined to describe an
equilibrium with toroidal magnetic field and nonvanish-
ing pressure gradient [11]:

Y= T,, $=—4(R3-r3)T2. (1)

. 5 ,
C)»r]l(?»r)-i-ﬁr "
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Here, the amplitude 4 is given by

—3RA;=cx[j1(xR>+ij;(m)]+2%R (22)

and A is determined by the equation
CkRj,(kRH—%RzzO. (23)

A common feature of these three solutions is the follow-
ing: They describe a spherical plasma ball embedded in a
background field, which is homogeneous at infinity. As
pointed out in the Introduction, this is, however, not the
right asymptotic behavior to describe fireballs. Their
vacuum field should decay spatially at least as fast as a di-
pole field:

|r3B| <const for r— o . (24)

Furthermore, the normal component of the magnetic
field B, must vanish on the plasma boundary I". Such
fields vanish, in fact, in the entire vacuum region P. To
realize this point, we introduce a potential ¢ for B,

B=Vo, (25)
which satisfies

V20=0 in ¥, (26)
as well as the boundary condition

3,®|r=0 (27)
and the growth condition corresponding to (24)

|®| <const, r3|V®|<const for r— w . (28)

[As P is singly connected, Eq. (25) is globally valid.] If 14
is bounded, it is a well-known result from potential
theory that the only solutions of Egs. (26) and (27) are
constant functions. If ¥ is unbounded, as in our case,
this is still true provided an additional growth condition
such as (28) is satisfied. From Egs. (26) and (27), it is
concluded that

— 2 3= 243 2
0= fqu)v ddir= fVl|v<1>| d’r+ [, 3,04,

(29)

where I'; is a sphere with radius R,, and ¥V, is the
volume between I' and I'y. If R; tends to o, then be-
cause of the property (28) the last integral in Eq. (29)
tends to zero, which means that there is only the trivial
solution ®=const. Note that this result is valid for any
singly connected plasma region and is independent of any
symmetry assumption.

Such a solution with zero vacuum field is already
known [10,12] and can easily be deduced from the third
equilibrium given above. {/}\ in Eq. (21) vanishes if the am-
plitude A4 is zero. Equations (22) and (23) can then be
considered as a homogeneous linear system of equations
for the determination of the parameters C and 8. There
are nontrivial solutions if the respective determinant van-
ishes:
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1 . . . —
Ejl(kR)—jl(kR)—]z()»R)—O . (30)
Equation (30) is obviously satisfied if AR is one of the
countably many zeros of j,. From the linear system, we
then have

6=— )»4% C (31)
and the fireball solution reads
»=CW(r)sin’@ , (32)
with
J1GR)

W(r)=Arj(Ar)— (Ar)?. (33)

AR
For a spherical plasma volume, the solutions (32) and (33)
are, in fact, the only ones. Another solution had neces-
sarily to include higher terms in the general expansion
(17). If the orthogonality of the T, (see the Appendix) is
used, the boundary condition (6) would result in the con-
dition

Jn—1(AR)=j, _1(AR)=0 (34)

for all » >3 with nonvanishing C,. The j,, however,
have only simple zeros. Therefore, C, =0 for n = 3.

This section concludes with two remarks.

(1) It is well known that an argument based on the viri-
al theorem

B? B?
+_ 3= +——— .
fV 3p 200 d°r faV D 2000 r-ds
1
——r-BB-dS |, (35)
Ho

which excludes, for example, self-confined equilibria for
fusion applications, does not work for ball lightning
[1,12]. In the former case, the pressure in the plasma re-
gion is positive and the ambient pressure is zero. Sending
dV to infinity and provided that the magnetic field is reg-
ular and decays sufficiently fast for » — oo, the right-hand
side in Eq. (35) then vanishes, whereas the left-hand side
is positive and a contradiction arises. For ball lightning,
such a conclusion is prevented: A positive pressure in the
plasma region is always balanced by a positive ambient
pressure, and the right-hand side of Eq. (35) therefore
does not vanish. For force-free equilibria, however, the
argument works again since the pressure can be uniform-
ly set to zero. This means that force-free equilibria are
not appropriate for describing ball lightning, and this is
true independently of any assumption concerning symme-
try, the current profile, or the plasma boundary.

(2) Not yet solved is the question of whether for the
linear profiles (7) and (8) the solution (32) and (33) is the
only one, i.e., whether the sphere is the only possible free
boundary. For a similar overdetermined free-boundary
problem, viz.,

V2y=f(¢) in V, ¥l3,=0, 8,¥ls, =const, (36)
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it has been proven that 3 must be a sphere [16]; the big
difference, however, is that the Laplacian—contrary to
the A, ~is spherically symmetric and the proof in [16] is
based on this fact. On the other hand, we will see in Sec.
IV that deformations of the spherical plasma boundary
are connected with perturbations of the linear profiles,
which makes it likely that for fixed linear profiles the
spherical plasma boundary is at least “locally”” unique.

III. PROPERTIES OF THE FIREBALL
EQUILIBRIUM

In this section some physical and geometrical proper-
ties of the fireball solution (32) and (33) are detailed. We
concentrate on the simplest case, viz., AR is the lowest
positive zero of j,,

AR =:z,=~5.76 . (37)

All other cases turn out to be unstable with respect to
ideal MHD modes (see Sec. V). The function W(r) is
plotted in Fig. 2; it has a single maximum at

ro=~0.513R . (38)

The configuration has, therefore, a single magnetic axis
situated at r, and 6,=m/2. All other magnetic lines
wrap in the poloidal and toroidal directions around this
axis. They are confined to magnetic surfaces whose cross
sections in the poloidal plane ¢ =const are just the level
lines of ¢ (see Fig. 3).

The components of the magnetic field (2) read in spher-
ical coordinates

W(r)

B,=—2C———cos0 , (39)
r

B, =CWT(")sin6 , (40)

B,=ca¥ing @41

and the magnitude of the field is

Wi

1 r/f{

FIG. 2. Radial dependence of the dimensionless flux function

Y.



3038

FIG. 3. Contour lines of ¥ (dotted lines have ¥=0).

2
B2=_ (W24 AW )sin0+ 2 Wcos0] . (42)
7 r

The level lines of B, which are plotted in Fig. 4, show
that B has its maximum B(0) at the center of the sphere.
The ratio of B in the center and on axis is a characteristic
quantity of the configuration and can be computed to
give

B(0)

_jl(zl)
B(ry,0,)

Z

o 23
R W(ro)

1
3

=~1.65. (43)

Further characteristic quantities are the ratio of the
current densities in the center and on axis or of the total
poloidal current J,; and the total toroidal current Jy,,.
As noted in Sec. II, the poloidal current through an equa-
torial ribbon limited by the plasma boundary and the sur-
face Y =const is given by

T (¥)=271(§) , (44)

FIG. 4. Contour lines of the magnetic field strength B (dotted
lines have B =0).
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whereas the toroidal current density is given by [17, p.
110]

Ly

Jtor(r,9)=—“0r—sine‘ *

Ko
r sin@

=rsinfp’+ I'I(Y(r,0))

=L 33, (Ar)sing . (45)
Ho

Note that there is a reversal of the toroidal current densi-
ty at r;=0.780R. Using these equations as well as (7),
(8), and (31)-(33), we get for the ratio of the current den-
sities in the center and on axis
Jpat(0) 1 2al(Y(r,7/2))
Jror(r0s00)  Jior(70,6) r—0 mr?
_ 2{1/3—[j(z1)/2,]}
Jil(ro/R)z, ]

~2.04 . (46)

The current density is purely poloidal on the z axis and
hence in the center and purely toroidal on the magnetic
axis. Similarly, we get for the ratio of the total currents

Jpol
Jtor

R pm,
=Toat9(r0,00)/ [ [ Tjiorr dr d6

TW(rg)

=————=2.10, 47
Si(z,)—2zjo(z)) “n

where Si denotes the sine integral Si(z)= f olsin(t) /¢t ]dt.
The maximal magnetic field strength in the fireball de-
pends on the ambient pressure p,. If (31) and (32) are in-
serted in (8), it is found that the pressure decreases mono-
tonically from p, at the plasma boundary to some value
at the magnetic axis. The condition that the pressure
does not become negative on axis limits the amplitude C
to a maximal value C,,,,

_jl(zl)

cz At
max 7-1

W(r0)=p0ﬂ0 . (48)

For p,=1 atm, the maximal field strength is

Jji(zy)

Zy

B2 (0)=2C ., A? ~1.33 tesla, (49)

wl—

which is in good agreement with the estimate in the In-
troduction. [Here, Systeme International units have been
used with p,=47X 1077 kgm/A?s2.] Note that B, is
independent of the radius of the ball and well beyond the
geomagnetic scale. The corresponding mean magnetic
energy density can be computed to give

B2

1 max 3
e= d°r
@5 v 20
C2 At 2
St 1+%]W2(z)+W'2(z) dz
Moz1 O 2z

~7.6X 10“L3 (50)
m
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[In the integral rA has been replaced by z. It can be
solved analytically and has the value 5.40.] This means
that for a ball radius of R =0.1 m the total magnetic en-
ergy is 320 J. Finally, the associated currents can be
computed, e.g.,

_ 2w c
Koz
For R =0.1 m this is about the current of a major stroke
of lightning. Yet another characteristic quantity that is
especially important for stability considerations is the
so-called rotational transform :. It measures the twist of

the field lines around the magnetic axis and is defined by

J A2W(ry)=~2.09X10° R[m] A . (51)

pol max

= lim —— 3 Ae,, (52)

n— o 21T v=1

where A©,, is the poloidal angle made by the field line in
the course of the vth toroidal transit. As field lines must
not intersect, ¢ is the same for all field lines on a magnetic
surface but may vary from surface to surface.

An alternative definition of ¢ or of its inverse g, the so-
called MHD safety factor, uses poloidal and toroidal
fluxes and is easier to evaluate for axisymmetric
configurations [17, p. 112]:

21r § rs1n0|V¢/| (53)

Here, the contour integral has to be done along the level
lines of ¥ in a poloidal section. The result, g as a function
of ¢, is shown in Fig. 5. As for the spheromak [18], the
safety factor decreases monotonically from the magnetic
axis to the outside. The shear S:=(v/q)(dq /d ), which
measures the variation of ¢ with , is, however, about an
order of magnitude smaller in the fireball than in the
spheromak. Note that the limiting values of g can be cal-
culated analytically. The value on the boundary ¢(0) de-
pends only on the twist along the z axis and is

q(O)———-zO 917, (54)
whereas the value on axis is determined by the half-axis

ratio e of the elliptical cross section of ¥ near the magnet-
ic axis:

(. =220 _0.930 (55)
q l/}max - 2¢R ~ Y. .
09314 Q
0.917 ‘flj
0 Wmax

FIG. 5. The safety factor g vs the dimensionless flux function

2
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[The numbers (54) and (55) have explicitly been reported
to correct incorrect statements made by Wu and Chen
[12].] The half-axis ratio e of the elliptical cross section
in the neighborhood of the magnetic axis is another
characteristic quantity of the equilibrium; the value used
in (55) is

172

— ZWII(r )
SLUARCLY RS (56)

2W(r0)

Remark: For comparison with the energy density value
given in (50), one should mention the data available at
present, as compiled in, for example, [3, p. 66]. The
values derived from observations are quite large; they
range from 0.4 J/cm? to 2.8 X 10° J/cm®. Note, however,
that these data are mostly based on rough estimates of
the mechanical or thermal damage caused by the fireball
and come from accidental observations. Measurements
from various fireball experiments show typically lower
energy densities. So, Barry gives a probable (and rather
large) range of about 2X 1073-2X 10 J/cm? for the en-
ergy density.

As noted in the Introduction, the nature of the energy
source for ball lightning is still controversial, and it de-
pends on the answer to this problem whether the magnet-
ic field makes a substantial (or the only) or only a negligi-
ble contribution to the total energy density. Therefore,
the value (50) can only serve as a lower bound.

IV. PERTURBED FIREBALL EQUILIBRIA

Fireball equilibria as defined in Sec. II are solutions of
the simplified free-boundary problem posed by Eq. (3)
with given profile functions I(y) and p(y) and the
boundary conditions

¢=0 onT, (57)
3,$=0 onT . (58)

[Equations (57) and (58) are equivalent to Eq. (57) and
V4|-=0, as long as T is nowhere tangential to r (which
we will assume).] To our knowledge there are, besides
the solution with spherical boundary discussed in Sec.
III, no further solutions known. Considering the exam-
ple given in remark (2) of Sec. II, it is far from obvious
whether further equilibria, especially with nonspherical
boundary, exist at all. In this situation a perturbative
study of the spherical equilibrium may be helpful. In
fact, if perturbations of order € are added to the profile
functions (7) and (8), a solution of the problem (3), (57),
and (58) is shown to exist at least in the sense of a formal
power series in the parameter € (the problem of conver-
gence is left open). This solution corresponds to a de-
formed boundary, described by a function R (8), which is
likewise given as a power series in €. Note that, if the
perturbed equilibrium is required to be symmetric with
respect to the equatorial plane (as the unperturbed equi-
librium is), then the profile perturbations uniquely deter-
mine the perturbed equilibrium. Finally, for a quadratic
perturbation of the pressure profile, the first-order pertur-
bations of equilibrium and boundary are calculated ex-
plicitly.
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In the following we assume the profile functions in the
form

pA () =AY —eu(y) , (59)

—up'(P)=0+ev(y) , (60)
with analytic functions # and v:

w)=3 ul, vh)=3 vy, (61)
i=2 i=1

and for ¥ and R a power series ansatz in € is made,

v=3 €, (62)
i=0
R=3 R, (63)

where 1y, is the unperturbed equilibrium and Ry=R is
constant. Let us now consider the Nth order in € of Eq.
(3) and Egs. (57) and (58). Equation (3) gives

(A, +A2)y =P, (Y, . . .
+P, (¢, . . .

N ¢N-l )rzsin29
s Un—1) > (64)

where P; and P, are power series in the variables
Yo, . - . » ¥y —;. Equations (57) and (58) are more compli-
cated to evaluate. If (63) is inserted in (62) and use is
made of the Taylor series expansion of ¢; with respect to
r,

-3 i,aa— :(R,0XR—RY (65)

the Nth-order contribution of Eq. (57) is of the form

N aj o o
— 571 . PN
0= 2 Ci,al ..... aNa j¢l 1 RN
[ - ST aN—O r
N
_¢N+ 2 1,0, yOn—10
i,j oy oN_l—OHEN
B ‘TN 1
Y,R,' - Ry
(66)
Here, C;, .., o, are constants, ¥, is taken at radius R

but still depends—like R ;—on the variable 6, and the in-
dices i, j, 0y, . . ., 0y are subject to the restrictions

N
=1 =1

Note that the expression (66) contains no derivatives of
¥n, and Ry does not occur at all. The latter point is due
to the fact that R, is multiplied by (3/9r)¥y(R,0),
which is zero. For the Nth-order contribution of Eq. (58)
we get similarly
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N aj+1 s s
1 N
0= 2 Ci,al ..... aNa j+1 7 1 RN
LJ, 0 0N=0
_ 2 N
_RN 3 2¢0+_ ) 2 Cx Tpyenes on—10
LI, aN_l—O
aj+1 o O
X arj+1'/’iR11 Ry
(68)

[The restrictions (67) apply, of course, to Eq. (68), too.]
Now, if ¥g,...,¥y_; and R,,...,Ry_,; are known,
Egs. (64) and (66) constitute a well-posed boundary value
problem for ¢,. The solution is unique since the only
solution 3, of the corresponding homogeneous problem,

¥, ~rAj,(Ar)T;(cosf) , (69)

is antisymmetric with respect to the equatorial plane (see
the Appendix), which contradicts our initial symmetry
assumption. If ¥, is known, the boundary perturbation
R, is determined by the algebraic equation (68). Note
that i, contains the factor sin20, which vanishes at 6=0,
m. But from Eq. (64) it follows recursively that all
1;,i EN behave as

¥; ~ O(sin%@) (70)

in the limit 6—0,7. Therefore, the function R N(0) is well
defined on the interval 0<6=<#. This shows that the
coefficients in the power series (62) and (63) can be deter-
mined to any order.

The simplest perturbation of the linear profile func-
tions is given by

u=0, v(y)=v ¢ (71)
in Egs. (59) and (60). Equation (64) then reads for N=1
(A, A, =v, horsin?0=v,r2W(r)sin*g , (72)

where the constant C in 3, has been set to 1, and Egs.
(66) and (68) take the form

¢1(R,9)=0 (73)

R,(6) 2¢0(R )+ ¢1(R 6)=0 (74)

With the symmetric ansatz
¥, (r,0)= f(r)sin’0+g(r)sin*g , (75)
Eq. (72) reduces to

e+ lxz——zz— =3¢, (76)
r r

g"+ AZ—%— g=v,r’wW, )
r

where primes denotes the derivative with respect to 7,
and from Egs. (73) and (74) we have

S(R)=g(R)=0, (78)
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R, (6)=— L )[f’(R)+g’(R)sin20] . (79)

WII(R

As the homogeneous part of Eq. (77) admits only one

solution, which is regular in » =0, the complete solution

of Eq. (77) depends on a single parameter a:

J1(AR)
AR

With (80) inserted in the right-hand side of Eq. (76), the
complete solution of Eq. (76) can be calculated:

g(r)=—uv,r* +jolAr)+ +airjy(Ar) . (80)

v i (AR)
fin=-3r" %kryo(kr)—!-Silﬁ——
—4aj,(Ar)+bArj(Ar), (81)

where y, is a spherical Bessel function of the second kind
and the last term is the only homogeneous solution of Eq.
(76). The parameters a and b are determined by Eq. (78),
where the fact is used that both j;(AR) and j;(AR) are
nonzero. Note that f'(R) and g’(R) are nonzero also.
They determine in Eq. (79) the first-order deformation of
the boundary, which may be prolate or oblate depending
on the sign of v,.

It remains for future work to prove rigorously the ex-
istence of nonspherical equilibria and explore thoroughly
what boundary shapes are possible.

V. STABILITY CONSIDERATIONS

In this section some aspects of linear stability in ideal
MHD are considered. Since the equilibria under con-
sideration are axisymmetric, the general linear perturba-
tion can be expanded in modes ~exp(ing) and modes
with different toroidal wave numbers n can be investigat-
ed separately. Here, only the cases n =0 (axisymmetric
modes) and n— o (“ballooning” modes) are considered
more closely. Special axisymmetric modes allow us to
discard all equilibria with more than one magnetic axis
(m =2) as unstable, whereas the lowest equilibrium
(m =1) is marginally stable with respect to these modes.
Ballooning modes are known to furnish severe stability
criteria and often set the stability threshold in equilibria
of fusion interest. The m =1 equilibrium turns out to be
ballooning stable, too. Finally, rigid motions are dis-
cussed, which, for example, are responsible for the insta-
bility of the spheromak.

In order to prove instability for m =2, a test function
is constructed which makes the MHD energy functional
(see, for instance, [17, p. 251)) negative. For axisym-
metric perturbations, the functional can be minimized
analytically with respect to the components of the dis-
placement vector £ that are tangential to the magnetic
surface Y =const. For the case where no surface currents
are present, the result is a functional in the (in general
complex) variable X =§-V in the plasma region ¥ and
in the variable X in the vacuum region ¥ (up to the factor
P> X is the toroidal component of the vector potential of
the magnetic field perturbation in ) [19]:
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W=W,+W, , (82)
széfV%{ VX >+ +ypp’s?

—[p3I'TY +pp’p 11X %)
e
W?=%fvdp—?{|Vf|2+ypp2§2} . (84)

Here, y is the ratio of the specific heats, j is given in
Eq. (45), and the following abbreviations have been used:

/5.

g=(X)'/{1), g=(X)/(1). (86)
The angles

denote the average over a magnetic surface, which in the
case of axisymmetry is just the line integral along a curve
=const., p=const. The second contribution in Eq. (84)
is due to the nonvanishing ambient pressure in fire ball
equilibria. [Averaging in %is performed with respect to
an arbitrary continuation $ of ¥ into 7.] The boundary
conditions are

X=X onT (88)
and
£=0 on 30 (89)
or
f?|v§?|21321<oo (90)
P

if 3Q does not exist. In addition, X must vanish where
V1 vanishes.

For the case where there is more than one magnetic
axis (m =2), we have

AR >2z,~9.095 , 1)

where z, is the second zero of j,(z). Consider a test func-
tion X, which is antisymmetric with respect to the equa-
torial plane in ¥ and which is zero in 5, £=0. Then f
and g vanish and for the linear profiles (7) and (8) the en-
ergy functional (82) reduces to
d3r
W=WV=%fV—p—2—{lVX|2—)\ZIXl2} . 92)

Minimizing (92) under the boundary conditions
X|p=X|,—0=X|,=0=0 (93)

leads to the eigenvalue problem
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AX+K*X=0, Ko

X(R,0)=X r,% (94) 10

=X(r,0)=X(r,7)=0
with A, given in Eq. (4). [Here, we have switched to
spherical coordinates again.] If there is a solution of (94)
with eigenvalue k <A, then one has W <0 if the eigen-
function of problem (94) is used as a test function, and 00 \U' -\
max

this means that the equilibrium is unstable. The lowest
eigenvalue is in fact

KoR =z, =~5.76 <AR, j,(z;)=0 (95)
and is obtained for
X=85(r)T;(cos0) , (96)

where S; is explained in Eq. (15) and T'; in the Appendix.
This proves the instability for all equilibria with m =2.
For the case where there is only one magnetic axis
(m =1), this mode is marginally stable. In order to prove
stability of the lowest equilibrium at least for all axisym-
metric modes, the modes that are symmetric with respect
to the equatorial plane have to be considered, too. For
these, the quantities f and g contribute to W and their
stabilizing influence has to be estimated. This is a deli-
cate issue and we do not dwell on it further.

Next, the so-called ballooning modes (n — o0 ) are con-
sidered. Ballooning modes are modes that are strongly
localized on closed field lines. They test the equilibrium
against perturbations that “balloon out” in regions of un-
favorable curvature, i.e., regions where the pressure in-
creases in the direction of the curvature vector of the
field line. These modes are driven by the pressure gra-
dient and stabilized by the energy, which is necessary to
bend the (in general, sheared) field lines. By choosing a
suitable test function in the energy functional, the prob-
lem can again be reduced to the solution of an eigenvalue
problem for a single scalar amplitude Y [20,17]:

2
B-V | B.vy | +252 (BXk-Vp)(BXK-K)Y+xY=0 .
B B

97)
If a field line parameter s is introduced, Eq. (97) is obvi-
ously an ordinary differential equation in s. The first
term represents the always stabilizing contribution due to
field line bending, whereas the coefficient of the second
term may change its sign, depending on the curvature be-
ing favorable or unfavorable. K denotes the curvature
vector

B
BV

B
B

K= (98)

of the field line and k is a vector perpendicular to B,
which depends on the chosen test function. This choice
has to be made carefully in order to satisfy simultaneous-
ly the periodicity constraints and the requirements of lo-
calization in a sheared equilibrium (see, for instance [17,
p. 397]). As a consequence, the amplitude Y is a so-called

FIG. 6. The lowest ballooning eigenvalue «, vs flux function
¥ (both dimensionless).

quasimode, which is defined for all s, —o <5 = 0, and
has to satisfy the normalization condition

f+w|Y|2ds<oo . (99)

The equilibrium is stable with respect to ballooning
modes if all eigenvalues « of the problem (97) and (99) for
all closed field lines are positive. Owing to axisymmetry,
the eigenvalues do not depend on the field line at the
same magnetic surface, but may be different for field lines
on different surfaces, i.e., k¥ is actually a function of the
surface label ¥. For the lowest equilibrium (m =1), the
lowest eigenvalue k, was computed numerically using a
multiple shooting method. The result, the function «y(1),
is shown in Fig. 6. Since k; is everywhere positive, the
ballooning modes are stable. This implies that so-called
Mercier modes [21] [corresponding to the continuous
spectrum of Eq. (97)] are also stable.

Finally, it should be mentioned that the equilibrium is
marginally stable with respect to “tilting” modes, which
make the spheromak unstable [22]. In fact, the fire ball is
marginally stable with respect to an arbitrary rigid
motion. The simple reason for this is the fact that a vac-
uum field with respect to which the fire ball could be
oriented is missing.

All these results indicate that the lowest equilibrium
could be completely stable. A rigorous proof, however,
has yet to be done.

VI. CONCLUSION

One key feature of ball lightning is the remarkable sta-
bility in shape—mostly spherical but, to a lesser extent,
also ellipsoidal or more complex—Ilasting seconds or
even minutes, which is difficult to explain without either
a fluid dynamic or plasma dynamic model. The fact that
the large majority of ball lightning observations are made
during thunderstorms favors a plasma dynamic explana-
tion. Once the framework of MHD is accepted, it is ar-
gued in this paper that MHD equilibria appropriate for
describing fireballs should be magnetic field-free outside
the plasma region. So far only one family of such fireball
equilibria, all with spherical boundary but with different
numbers m of magnetic axes, has been known. All but
the lowest of these equilibria turn out to be MHD unsta-
ble. The lowest one has been examined in greater detail:
it is marginally stable with respect to modes, which are
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axisymmetric (n =0, where n is the toroidal wave num-
ber) and antisymmetric with respect to the equatorial
plane, and stable with respect to ballooning modes
(n— o). However, the question of complete stability
has not yet been answered. Characteristic quantities
have been computed and typical values of magnetic field
and current are shown to be in agreement with expecta-
tions from ordinary lightning. Finally, perturbations of
the linear profiles along with deformations of the spheri-
cal boundary are shown to be possible; this makes it like-
ly that fireball equilibria with nonspherical boundary (in
accordance with observations) exist.

Another key feature of ball lightning, besides stability
in shape, is temporal stability. To be honest, it should be
stated that a big problem with all plasma models (and
other models as well) is that the fireball, owing to thermal
loss, should cool down in milliseconds, not seconds, if
there is no internal or external energy source available [2
(p. 133),8], and the model discussed here makes no excep-
tion in this respect. To make things worse, no energy
source has been identified so far. Moreover, ball lightn-
ing observations in closed rooms and even in an airplane
[23] virtually rule out external sources such as high-
frequency waves and also make the initial storage of com-
bustible substances in the fireball difficult to explain. So,
the longevity of the fireball is still an enigma.
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APPENDIX

In this Appendix some properties of the solutions of
Eq. (13) are listed for the reader’s convenience, especially
completeness and orthogonality of the T,, which are im-
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portant for the uniqueness of the fireball solution in a
spherical domain.

The ansatz T(t)="V'1—1t2P(¢) transforms Eq. (13) into
d*p dpP

-2t +
dt? dt

1
1—1¢2

c— P=0. (A1)

Solutions of Eq. (A1), which are regular on the interval
—1<t <1, are the associated Legendre functions of first
order, P!, n €N [15]. The corresponding eigenvalues are
c=c,=n(n+1). The T, can, therefore, be expressed by
P! or by ordinary Legendre polynomials P, :

T, (t)=V'1—¢*P}

n—1

=(1—t2)§t-Pn_1=(n——1)(Pn_2_tP,,_1). (A2)
The first four functions read
T,=1—t% T,=3(1—t>)t,
T,=3(1—t3)(5t*—1), Ts=3(1—t*)(7t3—3¢) . (A3)

It is, furthermore, reasonable to introduce the scalar
product

dt

fer= [ o5 (A4

with respect to which Eq. (13) is Hermitean and the
eigenfunctions 7T, are orthogonal. The corresponding
orthogonality relation can easily be deduced from the
analogous one for ordinary Legendre polynomials and
reads

+1 dt

- Tn(t)Tn’(t)l =2n(n—1)8

—¢2 n—1

(AS5)
Moreover, the 7, are complete on the interval
—1=<t=1, i.e., every function f(¢) with (f,f)< e can
be expanded in a series of T, n =2. This is expressed in
the relation

s 22l r T () =(1— )8t —1)

=, 2n(n—1)"" (A8

which can likewise be derived from its equivalent for
Legendre polynomials.

[1] D. Finkelstein and J. Rubinstein, Phys. Rev. 135, A390
(1964).

[2]S. Singer, The Nature of Ball Lightning (Plenum, New
York, 1971).

[3]1J. D. Barry, Ball Lightning and Bead Lightning (Plenum,
New York, 1980).

[4] B. U. Smirnov, Phys. Rep. 152, 177 (1987).

[51 K. L. E. Nickel, in Science of Ball Lightning (Fire Ball),
edited by Yoshi-Hiko Ohtsuki (World Scientific, Singa-
pore, 1988).

[6] J. Hill, Philos. Trans. R. Soc. London, Ser. A 185, 213
(1894).

[7]1 R. Liist and A. Schliiter, Z. Astrophys. 34, 263 (1954).

[8] P. L. Kapitza, Dokl. Akad. Nauk SSSR 101, 245 (1955).
[9]1 R. Liist and A. Schliiter, Z. Naturforsch. Teil A 12, 850
(1957); H. Grad and H. Rubin (unpublished); V. D.
Shafranov, Sov. Phys. JETP 6, 545 (1958).
[10] K. Prendergast, Astrophys. J. 123, 498 (1956).
[11] G. K. Morikawa, Phys. Fluids 12, 1648 (1969); G. K.
Morikawa and E. Rebhan, ibid. 13, 497 (1970); T. Yeh and
G. K. Morikawa, ibid. 14, 781 (1971).
[12] H. Wu and Y. Chen, Phys. Fluids B 1, 1753 (1989).
[13] H. Grad (unpublished); Int. J. Fusion Energy 3, 33 (1985).
[14] A. 1. Morozow and L. S. Solov’ev, in Reviews of Plasma
Physics, edited by M. A. Leontovich (Consultants Bureau,
New York, 1966), Vol. 2.



3044 R. KAISER AND D. LORTZ 52

[15] Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (Dover, New York, 1972).

[16] J. Serrin, Arch. Ration. Mech. Anal. 43, 304 (1971).

[17]J. P. Freidberg, Ideal Magnetohydrodynamics (Plenum,
New York, 1987).

[18] M. Rosenbluth and M. Bussac, Nucl. Fusion 19, 489
(1979).

[19] D. Lortz, Z. Naturforsch. Teil A 43, 1009 (1988).

[20] D. Dobrott, D. Nelson, J. Greene, A. Glasser, M. Chance,
and E. Frieman, Phys. Rev. Lett. 39, 943 (1977), D.
Correa-Restrepo, Z. Naturforsch. Teil A 33, 789 (1978).

[21] C. Mercier, Nucl. Fusion 1, 47 (1960).

[22] D. Lortz and G. Spies, Phys. Plasmas 1, 682 (1994).

[23]J. D. Barry and S. Singer, in Science of Ball Lightning
(Fire Ball), edited by Yoshi-Hiko Ohtsuki (World
Scientific, Singapore, 1988).



